Uses of Class
weka.classifiers.trees.j48.Distribution
Packages that use Distribution
-
Uses of Distribution in weka.classifiers.trees.j48
Methods in weka.classifiers.trees.j48 that return DistributionModifier and TypeMethodDescriptionfinal DistributionClassifierSplitModel.distribution()Returns the distribution of class values induced by the model.final DistributionDistribution.subtract(Distribution toSubstract) Subtracts the given distribution from this one.Methods in weka.classifiers.trees.j48 with parameters of type DistributionModifier and TypeMethodDescriptionfinal doubleEntropyBasedSplitCrit.newEnt(Distribution bags) Computes entropy of distribution after splitting.final doubleEntropyBasedSplitCrit.oldEnt(Distribution bags) Computes entropy of distribution before splitting.voidClassifierSplitModel.setDistribution(Distribution dist) Sets the distribution associated with model.final doubleEntropySplitCrit.splitCritValue(Distribution bags) Computes entropy for given distribution.final doubleEntropySplitCrit.splitCritValue(Distribution train, Distribution test) Computes entropy of test distribution with respect to training distribution.final doubleGainRatioSplitCrit.splitCritValue(Distribution bags) This method is a straightforward implementation of the gain ratio criterion for the given distribution.final doubleGainRatioSplitCrit.splitCritValue(Distribution bags, double totalnoInst, double numerator) This method computes the gain ratio in the same way C4.5 does.final doubleInfoGainSplitCrit.splitCritValue(Distribution bags) This method is a straightforward implementation of the information gain criterion for the given distribution.final doubleInfoGainSplitCrit.splitCritValue(Distribution bags, double totalNoInst) This method computes the information gain in the same way C4.5 does.final doubleInfoGainSplitCrit.splitCritValue(Distribution bags, double totalNoInst, double oldEnt) This method computes the information gain in the same way C4.5 does.doubleSplitCriterion.splitCritValue(Distribution bags) Computes result of splitting criterion for given distribution.doubleSplitCriterion.splitCritValue(Distribution train, Distribution test) Computes result of splitting criterion for given training and test distributions.doubleSplitCriterion.splitCritValue(Distribution train, Distribution test, int noClassesDefault) Computes result of splitting criterion for given training and test distributions and given number of classes.doubleSplitCriterion.splitCritValue(Distribution train, Distribution test, Distribution defC) Computes result of splitting criterion for given training and test distributions and given default distribution.final doubleEntropyBasedSplitCrit.splitEnt(Distribution bags) Computes entropy after splitting without considering the class values.final DistributionDistribution.subtract(Distribution toSubstract) Subtracts the given distribution from this one.Constructors in weka.classifiers.trees.j48 with parameters of type DistributionModifierConstructorDescriptionDistribution(Distribution toMerge) Creates distribution with only one bag by merging all bags of given distribution.Distribution(Distribution toMerge, int index) Creates distribution with two bags by merging all bags apart of the indicated one.NoSplit(Distribution distribution) Creates "no-split"-split for given distribution.