public class Gaussian extends Object implements FitFunction
This fitting target function is defined over dimension n
, by the
following n+2
parameters:
k = 0..n-1 - x₀ᵢ (with i = k) k = n - A k = n+1 - bwith
f(x) = A × exp( - S )and
S = b × ∑ (xᵢ - x₀ᵢ)²
Constructor and Description |
---|
Gaussian() |
Modifier and Type | Method and Description |
---|---|
double |
grad(double[] x,
double[] a,
int k)
Partial derivatives indices are ordered as follow:
|
double |
hessian(double[] x,
double[] a,
int rIn,
int cIn)
Evaluates the hessian value of the function, taken with respect to the
r th and c th parameters,
evaluated at point x . |
String |
toString() |
double |
val(double[] x,
double[] a)
Evaluates this function at point
x . |
public final double val(double[] x, double[] a)
FitFunction
x
. The function is
otherwise defined over an array of parameters a
, that
is the target of the fitting procedure.val
in interface FitFunction
x
- the multidimensional to evaluate the function ata
- the set of parameters that defines the functionx
public final double grad(double[] x, double[] a, int k)
k = 0..n-1 - x_i (with i = k) k = n - A k = n+1 - b
grad
in interface FitFunction
x
- the point to evaluate the gradient ata
- the set of parameters that defines the functionk
- the index of the parameter to compute the gradientdf(x,a)/da_k
FitFunction.val(double[], double[])
public final double hessian(double[] x, double[] a, int rIn, int cIn)
FitFunction
r
th and c
th parameters,
evaluated at point x
.hessian
in interface FitFunction
x
- the point to evaluate the gradient ata
- the set of parameters that defines the functionrIn
- the index of the first parameter to compute the gradientcIn
- the index of the second parameter to compute the gradient(r, c)
element of the hessian matrix d²f(x,a)/(da_r da_c)
FitFunction.val(double[], double[])
Copyright © 2015–2022 ImgLib2. All rights reserved.