public class Gaussian extends Object implements FitFunction
This fitting target function is defined over dimension n, by the
following n+2 parameters:
k = 0..n-1 - x₀ᵢ (with i = k) k = n - A k = n+1 - bwith
f(x) = A × exp( - S )and
S = b × ∑ (xᵢ - x₀ᵢ)²
| Constructor and Description |
|---|
Gaussian() |
| Modifier and Type | Method and Description |
|---|---|
double |
grad(double[] x,
double[] a,
int k)
Partial derivatives indices are ordered as follow:
|
double |
hessian(double[] x,
double[] a,
int rIn,
int cIn)
Evaluates the hessian value of the function, taken with respect to the
rth and cth parameters,
evaluated at point x. |
String |
toString() |
double |
val(double[] x,
double[] a)
Evaluates this function at point
x. |
public final double val(double[] x,
double[] a)
FitFunctionx. The function is
otherwise defined over an array of parameters a, that
is the target of the fitting procedure.val in interface FitFunctionx - the multidimensional to evaluate the function ata - the set of parameters that defines the functionxpublic final double grad(double[] x,
double[] a,
int k)
k = 0..n-1 - x_i (with i = k) k = n - A k = n+1 - b
grad in interface FitFunctionx - the point to evaluate the gradient ata - the set of parameters that defines the functionk - the index of the parameter to compute the gradientdf(x,a)/da_kFitFunction.val(double[], double[])public final double hessian(double[] x,
double[] a,
int rIn,
int cIn)
FitFunctionrth and cth parameters,
evaluated at point x.hessian in interface FitFunctionx - the point to evaluate the gradient ata - the set of parameters that defines the functionrIn - the index of the first parameter to compute the gradientcIn - the index of the second parameter to compute the gradient(r, c) element of the hessian matrix d²f(x,a)/(da_r da_c)FitFunction.val(double[], double[])Copyright © 2015–2022 ImgLib2. All rights reserved.