public class DogDetection<T extends RealType<T> & NativeType<T>> extends Object
Modifier and Type | Class and Description |
---|---|
static class |
DogDetection.ExtremaType |
protected class |
DogDetection.TypedDogDetection<F extends RealType<F> & NativeType<F>> |
Modifier and Type | Field and Description |
---|---|
protected DogDetection.ExtremaType |
extremaType |
protected double |
imageSigma |
protected RandomAccessible<T> |
input |
protected Interval |
interval |
protected boolean |
keepDoGImg |
protected double |
minf |
protected double |
minPeakValue |
protected boolean |
normalizeMinPeakValue |
protected int |
numThreads |
protected double[] |
pixelSize |
protected double |
sigmaLarger |
protected double |
sigmaSmaller |
protected DogDetection.TypedDogDetection<?> |
typedDogDetection |
Constructor and Description |
---|
DogDetection(RandomAccessible<T> input,
Interval interval,
double[] calibration,
double sigmaSmaller,
double sigmaLarger,
DogDetection.ExtremaType extremaType,
double minPeakValue,
boolean normalizeMinPeakValue)
Sets up a
DogDetection with the specified parameters (does not do
any computation yet). |
DogDetection(RandomAccessible<T> input,
Interval interval,
double[] calibration,
double sigmaSmaller,
double sigmaLarger,
DogDetection.ExtremaType extremaType,
double minPeakValue,
boolean normalizeMinPeakValue,
F computationType)
Sets up a
DogDetection with the specified parameters (does not do
any computation yet). |
DogDetection(RandomAccessibleInterval<T> input,
double[] calibration,
double sigmaSmaller,
double sigmaLarger,
DogDetection.ExtremaType extremaType,
double minPeakValue,
boolean normalizeMinPeakValue) |
Modifier and Type | Method and Description |
---|---|
double |
getImageSigma() |
boolean |
getKeepDoGImg() |
double |
getMinf() |
double |
getMinPeakValue() |
boolean |
getNormalizeMinPeakValue() |
int |
getNumThreads() |
ArrayList<Point> |
getPeaks()
If you want to get subpixel-localized peaks, call
getSubpixelPeaks() directly. |
ArrayList<RefinedPeak<Point>> |
getSubpixelPeaks() |
void |
setExecutorService(ExecutorService service) |
void |
setImageSigma(double imageSigma) |
void |
setKeepDoGImg(boolean keepDoGImg) |
void |
setMinf(double minf) |
void |
setMinPeakValue(double minPeakValue) |
void |
setNormalizeMinPeakValue(boolean normalizeMinPeakValue) |
void |
setNumThreads(int numThreads) |
protected final RandomAccessible<T extends RealType<T> & NativeType<T>> input
protected final Interval interval
protected final double sigmaSmaller
protected final double sigmaLarger
protected final double[] pixelSize
protected final DogDetection.TypedDogDetection<?> typedDogDetection
protected double imageSigma
protected double minf
protected DogDetection.ExtremaType extremaType
protected double minPeakValue
protected boolean normalizeMinPeakValue
protected boolean keepDoGImg
protected int numThreads
public DogDetection(RandomAccessibleInterval<T> input, double[] calibration, double sigmaSmaller, double sigmaLarger, DogDetection.ExtremaType extremaType, double minPeakValue, boolean normalizeMinPeakValue)
public DogDetection(RandomAccessible<T> input, Interval interval, double[] calibration, double sigmaSmaller, double sigmaLarger, DogDetection.ExtremaType extremaType, double minPeakValue, boolean normalizeMinPeakValue)
DogDetection
with the specified parameters (does not do
any computation yet). If the input image is of type DoubleType
,
DoubleType
will be used for computing the Difference-of-Gaussian.
In all other cases, FloatType
will be used).input
- the input image.interval
- which interval of the input image to processcalibration
- The calibration, i.e., the voxel sizes in some unit for the
input image.sigmaSmaller
- sigma for the smaller scale in the same units as calibration.sigmaLarger
- sigma for the larger scale in the same units as calibration.extremaType
- which type of extrema (minima, maxima) to detect. Note that
minima in the Difference-of-Gaussian correspond to bright
blobs on dark background. Maxima correspond to dark blobs on
bright background.minPeakValue
- threshold value for detected extrema. Maxima below
minPeakValue
or minima above -minPeakValue
will be disregarded.normalizeMinPeakValue
- Whether the peak value should be normalized. The
Difference-of-Gaussian is an approximation of the
scale-normalized Laplacian-of-Gaussian, with a factor of
f = sigmaSmaller / (sigmaLarger - sigmaSmaller). If
normalizeMinPeakValue=true
, the minPeakValue
will be divided by f (which is equivalent to scaling
the DoG by f).public DogDetection(RandomAccessible<T> input, Interval interval, double[] calibration, double sigmaSmaller, double sigmaLarger, DogDetection.ExtremaType extremaType, double minPeakValue, boolean normalizeMinPeakValue, F computationType)
DogDetection
with the specified parameters (does not do
any computation yet).input
- the input image.interval
- which interval of the input image to processcalibration
- The calibration, i.e., the voxel sizes in some unit for the
input image.sigmaSmaller
- sigma for the smaller scale in the same units as calibration.sigmaLarger
- sigma for the larger scale in the same units as calibration.extremaType
- which type of extrema (minima, maxima) to detect. Note that
minima in the Difference-of-Gaussian correspond to bright
blobs on dark background. Maxima correspond to dark blobs on
bright background.minPeakValue
- threshold value for detected extrema. Maxima below
minPeakValue
or minima above -minPeakValue
will be disregarded.normalizeMinPeakValue
- Whether the peak value should be normalized. The
Difference-of-Gaussian is an approximation of the
scale-normalized Laplacian-of-Gaussian, with a factor of
f = sigmaSmaller / (sigmaLarger - sigmaSmaller). If
normalizeMinPeakValue=true
, the minPeakValue
will be divided by f (which is equivalent to scaling
the DoG by f).computationType
- The type to use for computing the Difference-of-Gaussian.public ArrayList<Point> getPeaks()
getSubpixelPeaks()
directly.public ArrayList<RefinedPeak<Point>> getSubpixelPeaks()
public void setImageSigma(double imageSigma)
public void setMinf(double minf)
public void setMinPeakValue(double minPeakValue)
public void setNormalizeMinPeakValue(boolean normalizeMinPeakValue)
public void setKeepDoGImg(boolean keepDoGImg)
public void setNumThreads(int numThreads)
public double getImageSigma()
public double getMinf()
public double getMinPeakValue()
public boolean getNormalizeMinPeakValue()
public boolean getKeepDoGImg()
public int getNumThreads()
public void setExecutorService(ExecutorService service)
Copyright © 2015–2022 ImgLib2. All rights reserved.