public class PixelError extends Metrics
originalLabels, proposedLabels, verbose
Constructor and Description |
---|
PixelError(ij.ImagePlus originalLabels,
ij.ImagePlus proposedLabels)
Initialize pixel error metric
|
Modifier and Type | Method and Description |
---|---|
double |
getMetricValue()
Calculate the pixel error in 2D between some original labels
and the corresponding proposed labels (without thresholding).
|
double |
getMetricValue(double binaryThreshold)
Calculate the pixel error in 2D between some original labels
and the corresponding proposed labels.
|
Callable<Double> |
getPixelErrorConcurrent(ij.process.ImageProcessor image1,
ij.process.ImageProcessor image2)
Get pixel error between two image in a concurrent way
(to be submitted to an Executor Service).
|
Callable<Double> |
getPixelErrorConcurrent(ij.process.ImageProcessor image1,
ij.process.ImageProcessor image2,
double binaryThreshold)
Get pixel error between two image in a concurrent way
(to be submitted to an Executor Service).
|
double |
getPixelErrorMaximalFScore(double minThreshold,
double maxThreshold,
double stepThreshold)
Get the best F-score of the pixel error over a set of thresholds
|
ClassificationStatistics |
getPrecisionRecallStats(double binaryThreshold)
Calculate the pixel error and its derived statistics in 2D between
some original labels and the corresponding proposed labels.
|
ArrayList<ClassificationStatistics> |
getPrecisionRecallStats(double minThreshold,
double maxThreshold,
double stepThreshold)
Calculate the precision-recall values based on pixel error between
some 2D original labels and the corresponding proposed labels.
|
ClassificationStatistics |
getPrecisionRecallStats(double binaryThreshold,
ij.ImagePlus mask)
Calculate the pixel error and its derived statistics in 2D between
some original labels and the corresponding proposed labels.
|
Callable<ClassificationStatistics> |
getPrecisionRecallStatsConcurrent(ij.process.ImageProcessor image1,
ij.process.ImageProcessor image2,
double binaryThreshold)
Get pixel error value and derived statistics between two images
in a concurrent way (to be submitted to an Executor Service).
|
Callable<ClassificationStatistics> |
getPrecisionRecallStatsConcurrent(ij.process.ImageProcessor image1,
ij.process.ImageProcessor image2,
ij.process.ImageProcessor mask,
double binaryThreshold)
Get pixel error value and derived statistics between two images
in a concurrent way (to be submitted to an Executor Service).
|
ClassificationStatistics[] |
getPrecisionRecallStatsPerSlice(double binaryThreshold)
Calculate the pixel error and its derived statistics in 2D between
some original labels and the corresponding proposed labels.
|
static void |
main(String[] args)
Main method for calculate the pixel error metrics from the command line
|
ClassificationStatistics |
precisionRecallStats(ij.process.ImageProcessor label,
ij.process.ImageProcessor proposal,
double binaryThreshold)
Calculate the pixel error and derived statistics between some 2D original labels
and the corresponding proposed labels.
|
ClassificationStatistics |
precisionRecallStats(ij.process.ImageProcessor label,
ij.process.ImageProcessor proposal,
ij.process.ImageProcessor mask,
double binaryThreshold)
Calculate the pixel error and derived statistics between some 2D original labels
and the corresponding proposed labels.
|
getMinimumMetricValue, setVerboseMode
public PixelError(ij.ImagePlus originalLabels, ij.ImagePlus proposedLabels)
originalLabels
- original labels (single 2D image or stack)proposedLabels
- proposed new labels (single 2D image or stack of the same as as the original labels)public double getMetricValue(double binaryThreshold)
getMetricValue
in class Metrics
binaryThreshold
- threshold value to binarize proposal (larger than 0 and smaller than 1)public Callable<Double> getPixelErrorConcurrent(ij.process.ImageProcessor image1, ij.process.ImageProcessor image2, double binaryThreshold)
image1
- first imageimage2
- second imagebinaryThreshold
- threshold to apply to both imagespublic double getMetricValue()
public Callable<Double> getPixelErrorConcurrent(ij.process.ImageProcessor image1, ij.process.ImageProcessor image2)
image1
- first imageimage2
- second imagepublic ArrayList<ClassificationStatistics> getPrecisionRecallStats(double minThreshold, double maxThreshold, double stepThreshold)
minThreshold
- minimum threshold value to binarize the input imagesmaxThreshold
- maximum threshold value to binarize the input imagesstepThreshold
- threshold step value to use during binarizationpublic ClassificationStatistics getPrecisionRecallStats(double binaryThreshold)
binaryThreshold
- threshold value to binarize proposal (larger than 0 and smaller than 1)public ClassificationStatistics[] getPrecisionRecallStatsPerSlice(double binaryThreshold)
binaryThreshold
- threshold value to binarize proposal (larger than 0 and smaller than 1)public ClassificationStatistics getPrecisionRecallStats(double binaryThreshold, ij.ImagePlus mask)
binaryThreshold
- threshold value to binarize proposal (larger than 0 and smaller than 1)mask
- mask imagepublic Callable<ClassificationStatistics> getPrecisionRecallStatsConcurrent(ij.process.ImageProcessor image1, ij.process.ImageProcessor image2, double binaryThreshold)
image1
- first imageimage2
- second imagebinaryThreshold
- threshold to apply to both imagespublic Callable<ClassificationStatistics> getPrecisionRecallStatsConcurrent(ij.process.ImageProcessor image1, ij.process.ImageProcessor image2, ij.process.ImageProcessor mask, double binaryThreshold)
image1
- first imageimage2
- second imagemask
- mask imagebinaryThreshold
- threshold to apply to both imagespublic ClassificationStatistics precisionRecallStats(ij.process.ImageProcessor label, ij.process.ImageProcessor proposal, double binaryThreshold)
label
- 2D image with the original labelsproposal
- 2D image with the proposed labelsbinaryThreshold
- threshold value to binarize the input imagespublic ClassificationStatistics precisionRecallStats(ij.process.ImageProcessor label, ij.process.ImageProcessor proposal, ij.process.ImageProcessor mask, double binaryThreshold)
label
- 2D image with the original labelsproposal
- 2D image with the proposed labelsmask
- 2D image representing the binary maskbinaryThreshold
- threshold value to binarize the input imagespublic double getPixelErrorMaximalFScore(double minThreshold, double maxThreshold, double stepThreshold)
minThreshold
- minimum threshold value to binarize the input imagesmaxThreshold
- maximum threshold value to binarize the input imagesstepThreshold
- threshold step value to use during binarizationpublic static void main(String[] args)
args
- arguments to decide the actionCopyright © 2015–2021 Fiji. All rights reserved.