public class PixelError extends Metrics
originalLabels, proposedLabels, verbose| Constructor and Description |
|---|
PixelError(ij.ImagePlus originalLabels,
ij.ImagePlus proposedLabels)
Initialize pixel error metric
|
| Modifier and Type | Method and Description |
|---|---|
double |
getMetricValue()
Calculate the pixel error in 2D between some original labels
and the corresponding proposed labels (without thresholding).
|
double |
getMetricValue(double binaryThreshold)
Calculate the pixel error in 2D between some original labels
and the corresponding proposed labels.
|
Callable<Double> |
getPixelErrorConcurrent(ij.process.ImageProcessor image1,
ij.process.ImageProcessor image2)
Get pixel error between two image in a concurrent way
(to be submitted to an Executor Service).
|
Callable<Double> |
getPixelErrorConcurrent(ij.process.ImageProcessor image1,
ij.process.ImageProcessor image2,
double binaryThreshold)
Get pixel error between two image in a concurrent way
(to be submitted to an Executor Service).
|
double |
getPixelErrorMaximalFScore(double minThreshold,
double maxThreshold,
double stepThreshold)
Get the best F-score of the pixel error over a set of thresholds
|
ClassificationStatistics |
getPrecisionRecallStats(double binaryThreshold)
Calculate the pixel error and its derived statistics in 2D between
some original labels and the corresponding proposed labels.
|
ArrayList<ClassificationStatistics> |
getPrecisionRecallStats(double minThreshold,
double maxThreshold,
double stepThreshold)
Calculate the precision-recall values based on pixel error between
some 2D original labels and the corresponding proposed labels.
|
ClassificationStatistics |
getPrecisionRecallStats(double binaryThreshold,
ij.ImagePlus mask)
Calculate the pixel error and its derived statistics in 2D between
some original labels and the corresponding proposed labels.
|
Callable<ClassificationStatistics> |
getPrecisionRecallStatsConcurrent(ij.process.ImageProcessor image1,
ij.process.ImageProcessor image2,
double binaryThreshold)
Get pixel error value and derived statistics between two images
in a concurrent way (to be submitted to an Executor Service).
|
Callable<ClassificationStatistics> |
getPrecisionRecallStatsConcurrent(ij.process.ImageProcessor image1,
ij.process.ImageProcessor image2,
ij.process.ImageProcessor mask,
double binaryThreshold)
Get pixel error value and derived statistics between two images
in a concurrent way (to be submitted to an Executor Service).
|
ClassificationStatistics[] |
getPrecisionRecallStatsPerSlice(double binaryThreshold)
Calculate the pixel error and its derived statistics in 2D between
some original labels and the corresponding proposed labels.
|
static void |
main(String[] args)
Main method for calculate the pixel error metrics from the command line
|
ClassificationStatistics |
precisionRecallStats(ij.process.ImageProcessor label,
ij.process.ImageProcessor proposal,
double binaryThreshold)
Calculate the pixel error and derived statistics between some 2D original labels
and the corresponding proposed labels.
|
ClassificationStatistics |
precisionRecallStats(ij.process.ImageProcessor label,
ij.process.ImageProcessor proposal,
ij.process.ImageProcessor mask,
double binaryThreshold)
Calculate the pixel error and derived statistics between some 2D original labels
and the corresponding proposed labels.
|
getMinimumMetricValue, setVerboseModepublic PixelError(ij.ImagePlus originalLabels,
ij.ImagePlus proposedLabels)
originalLabels - original labels (single 2D image or stack)proposedLabels - proposed new labels (single 2D image or stack of the same as as the original labels)public double getMetricValue(double binaryThreshold)
getMetricValue in class MetricsbinaryThreshold - threshold value to binarize proposal (larger than 0 and smaller than 1)public Callable<Double> getPixelErrorConcurrent(ij.process.ImageProcessor image1, ij.process.ImageProcessor image2, double binaryThreshold)
image1 - first imageimage2 - second imagebinaryThreshold - threshold to apply to both imagespublic double getMetricValue()
public Callable<Double> getPixelErrorConcurrent(ij.process.ImageProcessor image1, ij.process.ImageProcessor image2)
image1 - first imageimage2 - second imagepublic ArrayList<ClassificationStatistics> getPrecisionRecallStats(double minThreshold, double maxThreshold, double stepThreshold)
minThreshold - minimum threshold value to binarize the input imagesmaxThreshold - maximum threshold value to binarize the input imagesstepThreshold - threshold step value to use during binarizationpublic ClassificationStatistics getPrecisionRecallStats(double binaryThreshold)
binaryThreshold - threshold value to binarize proposal (larger than 0 and smaller than 1)public ClassificationStatistics[] getPrecisionRecallStatsPerSlice(double binaryThreshold)
binaryThreshold - threshold value to binarize proposal (larger than 0 and smaller than 1)public ClassificationStatistics getPrecisionRecallStats(double binaryThreshold, ij.ImagePlus mask)
binaryThreshold - threshold value to binarize proposal (larger than 0 and smaller than 1)mask - mask imagepublic Callable<ClassificationStatistics> getPrecisionRecallStatsConcurrent(ij.process.ImageProcessor image1, ij.process.ImageProcessor image2, double binaryThreshold)
image1 - first imageimage2 - second imagebinaryThreshold - threshold to apply to both imagespublic Callable<ClassificationStatistics> getPrecisionRecallStatsConcurrent(ij.process.ImageProcessor image1, ij.process.ImageProcessor image2, ij.process.ImageProcessor mask, double binaryThreshold)
image1 - first imageimage2 - second imagemask - mask imagebinaryThreshold - threshold to apply to both imagespublic ClassificationStatistics precisionRecallStats(ij.process.ImageProcessor label, ij.process.ImageProcessor proposal, double binaryThreshold)
label - 2D image with the original labelsproposal - 2D image with the proposed labelsbinaryThreshold - threshold value to binarize the input imagespublic ClassificationStatistics precisionRecallStats(ij.process.ImageProcessor label, ij.process.ImageProcessor proposal, ij.process.ImageProcessor mask, double binaryThreshold)
label - 2D image with the original labelsproposal - 2D image with the proposed labelsmask - 2D image representing the binary maskbinaryThreshold - threshold value to binarize the input imagespublic double getPixelErrorMaximalFScore(double minThreshold,
double maxThreshold,
double stepThreshold)
minThreshold - minimum threshold value to binarize the input imagesmaxThreshold - maximum threshold value to binarize the input imagesstepThreshold - threshold step value to use during binarizationpublic static void main(String[] args)
args - arguments to decide the actionCopyright © 2015–2021 Fiji. All rights reserved.