public class AdjustedRandError extends Metrics
@article{Hubert85,
author = {Lawrence Hubert and Phipps Arabie},
title = {Comparing partitions},
journal = {Journal of Classification},
year = {1985},
volume = {2},
issue = {1},
pages = {193-218},
doi = {10.1007/BF01908075)
}
originalLabels, proposedLabels, verbose| Constructor and Description |
|---|
AdjustedRandError(ij.ImagePlus originalLabels,
ij.ImagePlus proposedLabels)
Initialize adjusted Rand error metric.
|
| Modifier and Type | Method and Description |
|---|---|
static double |
adjustedRandError(ij.process.ImageProcessor label,
ij.process.ImageProcessor proposal,
double binaryThreshold)
Calculate the adjusted Rand error between some 2D original labels
and the corresponding proposed labels.
|
static double |
adjustedRandIndex(ij.process.ShortProcessor cluster1,
ij.process.ShortProcessor cluster2)
Calculate the adjusted Rand index between to clusters, as described by
Lawrence Hubert and Phipps Arabie \cite{Rand71}.
|
Callable<Double> |
getAdjustedRandErrorConcurrent(ij.process.ImageProcessor image1,
ij.process.ImageProcessor image2,
double binaryThreshold)
Get adjusted Rand error between two images in a concurrent way
(to be submitted to an Executor Service).
|
double |
getMetricValue(double binaryThreshold)
Calculate the Rand error in 2D between some original labels
and the corresponding proposed labels.
|
getMinimumMetricValue, setVerboseModepublic AdjustedRandError(ij.ImagePlus originalLabels,
ij.ImagePlus proposedLabels)
originalLabels - original labels (single 2D image or stack)proposedLabels - proposed new labels (single 2D image or stack of the same as as the original labels)public double getMetricValue(double binaryThreshold)
@article{Rand71,
author = {William M. Rand},
title = {Objective criteria for the evaluation of clustering methods},
journal = {Journal of the American Statistical Association},
year = {1971},
volume = {66},
number = {336},
pages = {846--850},
doi = {10.2307/2284239)
}
getMetricValue in class MetricsbinaryThreshold - threshold value to binarize proposal (larger than 0 and smaller than 1)public static double adjustedRandError(ij.process.ImageProcessor label,
ij.process.ImageProcessor proposal,
double binaryThreshold)
@article{Hubert85,
author = {Lawrence Hubert and Phipps Arabie},
title = {Comparing partitions},
journal = {Journal of Classification},
year = {1985},
volume = {2},
issue = {1},
pages = {193-218},
doi = {10.1007/BF01908075)
}
label - 2D image with the original labelsproposal - 2D image with the proposed labelsbinaryThreshold - threshold value to binarize the input imagespublic Callable<Double> getAdjustedRandErrorConcurrent(ij.process.ImageProcessor image1, ij.process.ImageProcessor image2, double binaryThreshold)
@article{Hubert85,
author = {Lawrence Hubert and Phipps Arabie},
title = {Comparing partitions},
journal = {Journal of Classification},
year = {1985},
volume = {2},
issue = {1},
pages = {193-218},
doi = {10.1007/BF01908075)
}
image1 - first imageimage2 - second imagebinaryThreshold - threshold to apply to both imagespublic static double adjustedRandIndex(ij.process.ShortProcessor cluster1,
ij.process.ShortProcessor cluster2)
@article{Hubert85,
author = {Lawrence Hubert and Phipps Arabie},
title = {Comparing partitions},
journal = {Journal of Classification},
year = {1985},
volume = {2},
issue = {1},
pages = {193-218},
doi = {10.1007/BF01908075)
}
cluster1 - 2D segmented image (objects are labeled with different numbers)cluster2 - 2D segmented image (objects are labeled with different numbers)Copyright © 2015–2021 Fiji. All rights reserved.