public class Filter extends Object
Constructor and Description |
---|
Filter() |
Modifier and Type | Method and Description |
---|---|
static void |
convolveSeparable(ij.process.FloatProcessor input,
float[] h,
float[] v)
Convolve an image with a horizontal and a vertical kernel
simple straightforward, not optimized---replace this with a trusted better version soon
|
static ij.process.FloatProcessor |
createConvolveSeparable(ij.process.FloatProcessor input,
float[] h,
float[] v)
Create a convolved image with a horizontal and a vertical kernel
simple straightforward, not optimized---replace this with a trusted better version soon
|
static ij.process.FloatProcessor |
createDownsampled(ij.process.FloatProcessor source,
double scale,
float sourceSigma,
float targetSigma)
Create a downsampled
FloatProcessor . |
static ij.process.ImageProcessor |
createDownsampled(ij.process.ImageProcessor source,
double scale,
float sourceSigma,
float targetSigma)
Create a downsampled ImageProcessor.
|
static float[] |
createGaussianKernel(float sigma)
Create a non-normalized 1d-Gaussian kernel of appropriate size.
|
static ij.process.FloatProcessor[] |
createGradients(ij.process.FloatProcessor array) |
static float[] |
createNormalizedGaussianKernel(float sigma)
Create a normalized 1d-Gaussian kernel of appropriate size.
|
static ij.process.FloatProcessor |
createNormalizedShiftedGaussianKernel(float sigma,
float offsetX,
float offsetY)
Create a non-normalized 2d-Gaussian impulse with appropriate size whose
center is slightly shifted away from the middle.
|
static ij.process.FloatProcessor |
createShiftedGaussianKernel(float sigma,
float offsetX,
float offsetY)
Create a non-normalized 2d-Gaussian impulse with appropriate size whose
center is slightly shifted away from the middle.
|
static void |
normalize(float[] data)
Normalize data numerically such that the sum of all fields is 1.0
|
static ij.process.ImageProcessor |
scale(ij.process.ImageProcessor source,
float scale)
Scale an image with good quality in both up and down direction
|
static void |
smoothForScale(ij.process.FloatProcessor source,
double scale,
float sourceSigma,
float targetSigma)
Smooth with a Gaussian kernel that represents downsampling at a given
scale factor and sourceSigma.
|
static void |
smoothForScale(ij.process.ImageProcessor source,
double scale,
float sourceSigma,
float targetSigma)
Smooth with a Gaussian kernel that represents downsampling at a given
scale factor and sourceSigma.
|
public static final void normalize(float[] data)
data
- public static final float[] createGaussianKernel(float sigma)
sigma
- Standard deviation (σ) of the Gaussian kernelpublic static final float[] createNormalizedGaussianKernel(float sigma)
sigma
- Standard deviation (σ) of the Gaussian kernelpublic static final ij.process.FloatProcessor createShiftedGaussianKernel(float sigma, float offsetX, float offsetY)
sigma
- Standard deviation (σ) of the Gaussian kerneloffsetX
- horizontal center shift [0.0,0.5]offsetY
- vertical center shift [0.0,0.5]public static final ij.process.FloatProcessor createNormalizedShiftedGaussianKernel(float sigma, float offsetX, float offsetY)
sigma
- Standard deviation (σ) of the Gaussian kernelpublic static final ij.process.FloatProcessor[] createGradients(ij.process.FloatProcessor array)
public static final ij.process.FloatProcessor createConvolveSeparable(ij.process.FloatProcessor input, float[] h, float[] v)
input
- the input imageh
- horizontal kernelv
- vertical kernelpublic static final void convolveSeparable(ij.process.FloatProcessor input, float[] h, float[] v)
input
- the input imageh
- horizontal kernelv
- vertical kernelpublic static final void smoothForScale(ij.process.FloatProcessor source, double scale, float sourceSigma, float targetSigma)
public static final ij.process.FloatProcessor createDownsampled(ij.process.FloatProcessor source, double scale, float sourceSigma, float targetSigma)
FloatProcessor
.source
- the source imagescale
- scaling factorsourceSigma
- the Gaussian at which the source was sampled (guess 0.5 if you do not know)targetSigma
- the Gaussian at which the target will be sampledFloatProcessor
public static final void smoothForScale(ij.process.ImageProcessor source, double scale, float sourceSigma, float targetSigma)
public static final ij.process.ImageProcessor createDownsampled(ij.process.ImageProcessor source, double scale, float sourceSigma, float targetSigma)
source
- the source imagescale
- scaling factorsourceSigma
- the Gaussian at which the source was sampled (guess 0.5 if you do not know)targetSigma
- the Gaussian at which the target will be sampledFloatProcessor
public static final ij.process.ImageProcessor scale(ij.process.ImageProcessor source, float scale)
Copyright © 2015–2021 Fiji. All rights reserved.