Package | Description |
---|---|
delaunay |
Modifier and Type | Method and Description |
---|---|
Pnt |
Pnt.add(Pnt p)
Add.
|
Pnt |
Pnt.bisector(Pnt point)
Perpendicular bisector of two Pnts.
|
static Pnt |
Pnt.circumcenter(Pnt[] simplex)
Circumcenter of a simplex.
|
static Pnt |
Pnt.cross(Pnt[] matrix)
Compute generalized cross-product of the rows of a matrix.
|
Pnt |
Pnt.extend(double[] coords)
Create a new Pnt by adding additional coordinates to this Pnt.
|
Pnt |
Pnt.isOn(Pnt[] simplex)
Test if this Pnt is on a simplex.
|
Pnt |
Pnt.isOutside(Pnt[] simplex)
Test if this Pnt is outside of simplex.
|
Pnt |
Pnt.subtract(Pnt p)
Subtract.
|
Modifier and Type | Method and Description |
---|---|
Pnt |
Pnt.add(Pnt p)
Add.
|
double |
Pnt.angle(Pnt p)
Angle (in radians) between two Pnts (treated as vectors).
|
Pnt |
Pnt.bisector(Pnt point)
Perpendicular bisector of two Pnts.
|
static Pnt |
Pnt.circumcenter(Pnt[] simplex)
Circumcenter of a simplex.
|
static double |
Pnt.content(Pnt[] simplex)
Determine the signed content (i.e., area or volume, etc.) of a simplex.
|
static Pnt |
Pnt.cross(Pnt[] matrix)
Compute generalized cross-product of the rows of a matrix.
|
Set |
DelaunayTriangulation.delaunayPlace(Pnt site)
Place a new point site into the DT.
|
static double |
Pnt.determinant(Pnt[] matrix)
Compute the determinant of a matrix (array of Pnts).
|
int |
Pnt.dimCheck(Pnt p)
Check that dimensions match.
|
double |
Pnt.dot(Pnt p)
Dot product.
|
boolean |
Pnt.isInside(Pnt[] simplex)
Test if this Pnt is inside a simplex.
|
Pnt |
Pnt.isOn(Pnt[] simplex)
Test if this Pnt is on a simplex.
|
Pnt |
Pnt.isOutside(Pnt[] simplex)
Test if this Pnt is outside of simplex.
|
Simplex |
DelaunayTriangulation.locate(Pnt point)
Locate the triangle with point (a Pnt) inside (or on) it.
|
int[] |
Pnt.relation(Pnt[] simplex)
Relation between this Pnt and a simplex (represented as an array of Pnts).
|
Pnt |
Pnt.subtract(Pnt p)
Subtract.
|
static String |
Pnt.toString(Pnt[] matrix)
Create a String for a matrix.
|
int |
Pnt.vsCircumcircle(Pnt[] simplex)
Test relation between this Pnt and circumcircle of a simplex.
|
Copyright © 2015–2021 Fiji. All rights reserved.