public class LutherIntegrator extends RungeKuttaIntegrator
This method is described in H. A. Luther 1968 paper An explicit Sixth-Order Runge-Kutta Formula.
This method is an explicit Runge-Kutta method, its Butcher-array is the following one :
0 | 0 0 0 0 0 0 1 | 1 0 0 0 0 0 1/2 | 3/8 1/8 0 0 0 0 2/3 | 8/27 2/27 8/27 0 0 0 (7-q)/14 | ( -21 + 9q)/392 ( -56 + 8q)/392 ( 336 - 48q)/392 ( -63 + 3q)/392 0 0 (7+q)/14 | (-1155 - 255q)/1960 ( -280 - 40q)/1960 ( 0 - 320q)/1960 ( 63 + 363q)/1960 ( 2352 + 392q)/1960 0 1 | ( 330 + 105q)/180 ( 120 + 0q)/180 ( -200 + 280q)/180 ( 126 - 189q)/180 ( -686 - 126q)/180 ( 490 - 70q)/180 |-------------------------------------------------------------------------------------------------------------------------------------------------- | 1/20 0 16/45 0 49/180 49/180 1/20where q = √21
EulerIntegrator
,
ClassicalRungeKuttaIntegrator
,
GillIntegrator
,
MidpointIntegrator
,
ThreeEighthesIntegrator
isLastStep, resetOccurred, stepHandlers, stepSize, stepStart
Constructor and Description |
---|
LutherIntegrator(double step)
Simple constructor.
|
integrate, singleStep
acceptStep, addEventHandler, addEventHandler, addStepHandler, clearEventHandlers, clearStepHandlers, computeDerivatives, getCounter, getCurrentSignedStepsize, getCurrentStepStart, getEvaluations, getEvaluationsCounter, getEventHandlers, getExpandable, getMaxEvaluations, getName, getStepHandlers, initIntegration, integrate, sanityChecks, setEquations, setMaxEvaluations, setStateInitialized
Copyright © 2003–2016 The Apache Software Foundation. All rights reserved.