Uses of Interface
weka.clusterers.Clusterer
Packages that use Clusterer
Package
Description
-
Uses of Clusterer in weka.attributeSelection
Methods in weka.attributeSelection that return ClustererModifier and TypeMethodDescriptionabstract ClustererUnsupervisedSubsetEvaluator.getClusterer()Get the clustererMethods in weka.attributeSelection with parameters of type ClustererModifier and TypeMethodDescriptionabstract voidUnsupervisedSubsetEvaluator.setClusterer(Clusterer d) Set the clusterer to use -
Uses of Clusterer in weka.clusterers
Subinterfaces of Clusterer in weka.clusterersModifier and TypeInterfaceDescriptioninterfaceInterface for clusterers that can estimate the density for a given instance.Classes in weka.clusterers that implement ClustererModifier and TypeClassDescriptionclassAbstract clusterer.classAbstract clustering model that produces (for each test instance) an estimate of the membership in each cluster (ie.classCluster data using the capopy clustering algorithm, which requires just one pass over the data.classClass implementing the Cobweb and Classit clustering algorithms.
Note: the application of node operators (merging, splitting etc.) in terms of ordering and priority differs (and is somewhat ambiguous) between the original Cobweb and Classit papers.classSimple EM (expectation maximisation) class.
EM assigns a probability distribution to each instance which indicates the probability of it belonging to each of the clusters.classCluster data using the FarthestFirst algorithm.
For more information see:
Hochbaum, Shmoys (1985).classClass for running an arbitrary clusterer on data that has been passed through an arbitrary filter.classHierarchical clustering class.classClass for wrapping a Clusterer to make it return a distribution and density.classAbstract utility class for handling settings common to randomizable clusterers.classAbstract utility class for handling settings common to randomizable clusterers.classAbstract utility class for handling settings common to randomizable clusterers.classCluster data using the k means algorithm.classMeta-clusterer for enhancing a base clusterer.Methods in weka.clusterers that return ClustererModifier and TypeMethodDescriptionstatic ClustererCreates a new instance of a clusterer given it's class name and (optional) arguments to pass to it's setOptions method.CheckClusterer.getClusterer()Get the clusterer used as the clustererMakeDensityBasedClusterer.getClusterer()Gets the clusterer being wrapped.SingleClustererEnhancer.getClusterer()Get the clusterer used as the base clusterer.static Clusterer[]AbstractClusterer.makeCopies(Clusterer model, int num) Creates copies of the current clusterer.static ClustererCreates a deep copy of the given clusterer using serialization.Methods in weka.clusterers with parameters of type ClustererModifier and TypeMethodDescriptionstatic StringClusterEvaluation.evaluateClusterer(Clusterer clusterer, String[] options) Evaluates a clusterer with the options given in an array of strings.static Clusterer[]AbstractClusterer.makeCopies(Clusterer model, int num) Creates copies of the current clusterer.static ClustererCreates a deep copy of the given clusterer using serialization.static voidAbstractClusterer.runClusterer(Clusterer clusterer, String[] options) runs the clusterer instance with the given options.voidCheckClusterer.setClusterer(Clusterer newClusterer) Set the clusterer for testing.voidClusterEvaluation.setClusterer(Clusterer clusterer) set the clusterervoidMakeDensityBasedClusterer.setClusterer(Clusterer toWrap) Sets the clusterer to wrap.voidSingleClustererEnhancer.setClusterer(Clusterer value) Set the base clusterer.Constructors in weka.clusterers with parameters of type ClustererModifierConstructorDescriptionMakeDensityBasedClusterer(Clusterer toWrap) Contructs a MakeDensityBasedClusterer wrapping a given Clusterer. -
Uses of Clusterer in weka.filters.unsupervised.attribute
Methods in weka.filters.unsupervised.attribute that return ClustererModifier and TypeMethodDescriptionAddCluster.getClusterer()Gets the clusterer used by the filter.Methods in weka.filters.unsupervised.attribute with parameters of type ClustererModifier and TypeMethodDescriptionvoidAddCluster.setClusterer(Clusterer clusterer) Sets the clusterer to assign clusters with. -
Uses of Clusterer in weka.gui.beans
Methods in weka.gui.beans that return ClustererModifier and TypeMethodDescriptionBatchClustererEvent.getClusterer()Get the clustererClusterer.getClusterer()Get the clusterer currently set for this wrapperMethods in weka.gui.beans with parameters of type ClustererModifier and TypeMethodDescriptionvoidClusterer.setClusterer(Clusterer c) Set the clusterer for this wrapperConstructors in weka.gui.beans with parameters of type ClustererModifierConstructorDescriptionBatchClustererEvent(Object source, Clusterer scheme, DataSetEvent tstI, int setNum, int maxSetNum, int testOrTrain) Creates a newBatchClustererEventinstance. -
Uses of Clusterer in weka.gui.explorer
Methods in weka.gui.explorer that return ClustererModifier and TypeMethodDescriptionClustererAssignmentsPlotInstances.getClusterer()Returns the currently set clusterer.Methods in weka.gui.explorer with parameters of type ClustererModifier and TypeMethodDescriptionvoidClustererAssignmentsPlotInstances.setClusterer(Clusterer value) Sets the classifier used for making the predictions. -
Uses of Clusterer in weka.knowledgeflow.steps
Methods in weka.knowledgeflow.steps that return ClustererModifier and TypeMethodDescriptionClusterer.getClusterer()Get the clusterer to trainClusterer.processPrimary(Integer setNum, Integer maxSetNum, Data data, PairedDataHelper<Clusterer> helper) Process a training split (primary data handled by the PairedDataHelper)Methods in weka.knowledgeflow.steps with parameters of type ClustererModifier and TypeMethodDescriptionvoidClusterer.setClusterer(Clusterer clusterer) Set the clusterer to trainMethod parameters in weka.knowledgeflow.steps with type arguments of type ClustererModifier and TypeMethodDescriptionClusterer.processPrimary(Integer setNum, Integer maxSetNum, Data data, PairedDataHelper<Clusterer> helper) Process a training split (primary data handled by the PairedDataHelper)voidClusterer.processSecondary(Integer setNum, Integer maxSetNum, Data data, PairedDataHelper<Clusterer> helper) Process a test split/fold (secondary data handled by PairedDataHelper)