Package org.jgrapht.alg.matching
Class KuhnMunkresMinimalWeightBipartitePerfectMatching<V,E>
- java.lang.Object
-
- org.jgrapht.alg.matching.KuhnMunkresMinimalWeightBipartitePerfectMatching<V,E>
-
- Type Parameters:
V
- the graph vertex typeE
- the graph edge type
- All Implemented Interfaces:
MatchingAlgorithm<V,E>
public class KuhnMunkresMinimalWeightBipartitePerfectMatching<V,E> extends java.lang.Object implements MatchingAlgorithm<V,E>
Kuhn-Munkres algorithm (named in honor of Harold Kuhn and James Munkres) solving assignment problem also known as hungarian algorithm (in the honor of hungarian mathematicians Dénes K?nig and Jen? Egerváry). It's running time $O(V^3)$.Assignment problem could be set as follows:
Given complete bipartite graph $G = (S, T; E)$, such that $|S| = |T|$, and each edge has non-negative cost c(i, j), find perfect matching of minimal cost.
- Author:
- Alexey Kudinkin
-
-
Nested Class Summary
-
Nested classes/interfaces inherited from interface org.jgrapht.alg.interfaces.MatchingAlgorithm
MatchingAlgorithm.Matching<V,E>, MatchingAlgorithm.MatchingImpl<V,E>
-
-
Field Summary
-
Fields inherited from interface org.jgrapht.alg.interfaces.MatchingAlgorithm
DEFAULT_EPSILON
-
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description MatchingAlgorithm.Matching<V,E>
getMatching()
Compute a matching for a given graph.
-
-
-
Constructor Detail
-
KuhnMunkresMinimalWeightBipartitePerfectMatching
public KuhnMunkresMinimalWeightBipartitePerfectMatching(Graph<V,E> graph, java.util.Set<? extends V> partition1, java.util.Set<? extends V> partition2)
Construct a new instance of the algorithm.- Parameters:
graph
- the input graphpartition1
- the first partition of the vertex setpartition2
- the second partition of the vertex set
-
-
Method Detail
-
getMatching
public MatchingAlgorithm.Matching<V,E> getMatching()
Compute a matching for a given graph.- Specified by:
getMatching
in interfaceMatchingAlgorithm<V,E>
- Returns:
- a matching
-
-