Uses of Class
weka.filters.unsupervised.attribute.PotentialClassIgnorer

Packages that use PotentialClassIgnorer
Package
Description
 
  • Uses of PotentialClassIgnorer in weka.filters.unsupervised.attribute

    Modifier and Type
    Class
    Description
    class 
    Centers all numeric attributes in the given dataset to have zero mean (apart from the class attribute, if set).
    class 
    An instance filter that discretizes a range of numeric attributes in the dataset into nominal attributes.
    class 
    Modify numeric attributes according to a given mathematical expression.
    class 
    Merges many values of a nominal attribute into one value.
    class 
    Normalizes all numeric values in the given dataset (apart from the class attribute, if set).
    class 
    Converts all numeric attributes into binary attributes (apart from the class attribute, if set): if the value of the numeric attribute is exactly zero, the value of the new attribute will be zero.
    class 
    An attribute filter that converts ordinal nominal attributes into numeric ones

    Valid options are:
    class 
    Discretizes numeric attributes using equal frequency binning and forces the number of bins to be equal to the square root of the number of values of the numeric attribute.

    For more information, see:

    Ying Yang, Geoffrey I.
    class 
    Replaces all missing values for nominal and numeric attributes in a dataset with the modes and means from the training data.
    class 
    Replaces all missing values for nominal, string, numeric and date attributes in the dataset with user-supplied constant values.
    class 
    Standardizes all numeric attributes in the given dataset to have zero mean and unit variance (apart from the class attribute, if set).