Uses of Class
weka.classifiers.functions.supportVector.Kernel
Packages that use Kernel
Package
Description
-
Uses of Kernel in weka.classifiers.functions
Methods in weka.classifiers.functions that return KernelModifier and TypeMethodDescriptionGaussianProcesses.getKernel()
Gets the kernel to use.SMO.BinarySMO.getKernel()
Returns the kernel to useSMO.getKernel()
Returns the kernel to useSMOreg.getKernel()
Returns the kernel to useMethods in weka.classifiers.functions with parameters of type Kernel -
Uses of Kernel in weka.classifiers.functions.supportVector
Subclasses of Kernel in weka.classifiers.functions.supportVectorModifier and TypeClassDescriptionclass
Base class for RBFKernel and PolyKernel that implements a simple LRU.class
The normalized polynomial kernel.
K(x,y) = <x,y>/sqrt(<x,x><y,y>) where <x,y> = PolyKernel(x,y)class
The polynomial kernel : K(x, y) = <x, y>^p or K(x, y) = (<x, y>+1)^pclass
This kernel is based on a static kernel matrix that is read from a file.class
The Pearson VII function-based universal kernel.
For more information see:
B.class
The RBF kernel : K(x, y) = exp(-gamma*(x-y)^2)
Valid options are:class
Implementation of the subsequence kernel (SSK) as described in [1] and of the subsequence kernel with lambda pruning (SSK-LP) as described in [2].
For more information, see
Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, Christopher J.Methods in weka.classifiers.functions.supportVector that return KernelModifier and TypeMethodDescriptionstatic Kernel
Creates a new instance of a kernel given it's class name and (optional) arguments to pass to it's setOptions method.CheckKernel.getKernel()
Get the kernel being testedstatic Kernel[]
Kernel.makeCopies
(Kernel model, int num) Creates a given number of deep or shallow (if the kernel implements Copyable) copies of the given kernel using serialization.static Kernel
Creates a shallow copy of the kernel (if it implements Copyable) otherwise a deep copy using serialization.Methods in weka.classifiers.functions.supportVector with parameters of type KernelModifier and TypeMethodDescriptionstatic String
Evaluates the Kernel with the given commandline options and returns the evaluation string.Evaluates the Kernel with the given commandline options and returns the evaluation string.static Kernel[]
Kernel.makeCopies
(Kernel model, int num) Creates a given number of deep or shallow (if the kernel implements Copyable) copies of the given kernel using serialization.static Kernel
Creates a shallow copy of the kernel (if it implements Copyable) otherwise a deep copy using serialization.void
Set the lernel to test. -
Uses of Kernel in weka.filters.unsupervised.attribute
Methods in weka.filters.unsupervised.attribute that return KernelMethods in weka.filters.unsupervised.attribute with parameters of type Kernel