001/*
002 * Licensed to the Apache Software Foundation (ASF) under one or more
003 * contributor license agreements.  See the NOTICE file distributed with
004 * this work for additional information regarding copyright ownership.
005 * The ASF licenses this file to You under the Apache License, Version 2.0
006 * (the "License"); you may not use this file except in compliance with
007 * the License.  You may obtain a copy of the License at
008 *
009 *      http://www.apache.org/licenses/LICENSE-2.0
010 *
011 * Unless required by applicable law or agreed to in writing, software
012 * distributed under the License is distributed on an "AS IS" BASIS,
013 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
014 * See the License for the specific language governing permissions and
015 * limitations under the License.
016 */
017package org.apache.commons.text.similarity;
018
019/**
020 * A similarity algorithm indicating the length of the longest common subsequence between two strings.
021 *
022 * <p>
023 * The Longest common subsequence algorithm returns the length of the longest subsequence that two strings have in
024 * common. Two strings that are entirely different, return a value of 0, and two strings that return a value
025 * of the commonly shared length implies that the strings are completely the same in value and position.
026 * <i>Note.</i>  Generally this algorithm is fairly inefficient, as for length <i>m</i>, <i>n</i> of the input
027 * {@code CharSequence}'s {@code left} and {@code right} respectively, the runtime of the
028 * algorithm is <i>O(m*n)</i>.
029 * </p>
030 *
031 * <p>
032 * As of version 1.10, a more space-efficient of the algorithm is implemented. The new algorithm has linear space
033 * complexity instead of quadratic. However, time complexity is still quadratic in the size of input strings.
034 * </p>
035 *
036 * <p>
037 * The implementation is based on Hirschberg's Longest Commons Substring algorithm (cited below).
038 * </p>
039 *
040 * <p>For further reading see:</p>
041 * <ul>
042 * <li>
043 * Lothaire, M. <i>Applied combinatorics on words</i>. New York: Cambridge U Press, 2005. <b>12-13</b>
044 * </li>
045 * <li>
046 * D. S. Hirschberg, "A linear space algorithm for computing maximal common subsequences," CACM, 1975, pp. 341--343.
047 * </li>
048 * </ul>
049 *
050 * @since 1.0
051 */
052public class LongestCommonSubsequence implements SimilarityScore<Integer> {
053
054    /**
055     * An implementation of "ALG B" from Hirschberg's CACM '71 paper.
056     * Assuming the first input sequence is of size <code>m</code> and the second input sequence is of size
057     * <code>n</code>, this method returns the last row of the dynamic programming (DP) table when calculating
058     * the LCS of the two sequences in <i>O(m*n)</i> time and <i>O(n)</i> space.
059     * The last element of the returned array, is the size of the LCS of the two input sequences.
060     *
061     * @param left first input sequence.
062     * @param right second input sequence.
063     * @return last row of the dynamic-programming (DP) table for calculating the LCS of <code>left</code> and <code>right</code>
064     * @since 1.10.0
065     */
066    private static int[] algorithmB(final CharSequence left, final CharSequence right) {
067        final int m = left.length();
068        final int n = right.length();
069
070        // Creating an array for storing two rows of DP table
071        final int[][] dpRows = new int[2][1 + n];
072
073        for (int i = 1; i <= m; i++) {
074            // K(0, j) <- K(1, j) [j = 0...n], as per the paper:
075            // Since we have references in Java, we can swap references instead of literal copying.
076            // We could also use a "binary index" using modulus operator, but directly swapping the
077            // two rows helps readability and keeps the code consistent with the algorithm description
078            // in the paper.
079            final int[] temp = dpRows[0];
080            dpRows[0] = dpRows[1];
081            dpRows[1] = temp;
082
083            for (int j = 1; j <= n; j++) {
084                if (left.charAt(i - 1) == right.charAt(j - 1)) {
085                    dpRows[1][j] = dpRows[0][j - 1] + 1;
086                } else {
087                    dpRows[1][j] = Math.max(dpRows[1][j - 1], dpRows[0][j]);
088                }
089            }
090        }
091
092        // LL(j) <- K(1, j) [j=0...n], as per the paper:
093        // We don't need literal copying of the array, we can just return the reference
094        return dpRows[1];
095    }
096
097    /**
098     * An implementation of "ALG C" from Hirschberg's CACM '71 paper.
099     * Assuming the first input sequence is of size <code>m</code> and the second input sequence is of size
100     * <code>n</code>, this method returns the Longest Common Subsequence (LCS) of the two sequences in
101     * <i>O(m*n)</i> time and <i>O(m+n)</i> space.
102     *
103     * @param left first input sequence.
104     * @param right second input sequence.
105     * @return the LCS of <code>left</code> and <code>right</code>
106     * @since 1.10.0
107     */
108    private static String algorithmC(final CharSequence left, final CharSequence right) {
109        final int m = left.length();
110        final int n = right.length();
111
112        final StringBuilder out = new StringBuilder();
113
114        if (m == 1) { // Handle trivial cases, as per the paper
115            final char leftCh = left.charAt(0);
116            for (int j = 0; j < n; j++) {
117                if (leftCh == right.charAt(j)) {
118                    out.append(leftCh);
119                    break;
120                }
121            }
122        } else if (n > 0 && m > 1) {
123            final int mid = m / 2; // Find the middle point
124
125            final CharSequence leftFirstPart = left.subSequence(0, mid);
126            final CharSequence leftSecondPart = left.subSequence(mid, m);
127
128            // Step 3 of the algorithm: two calls to Algorithm B
129            final int[] l1 = algorithmB(leftFirstPart, right);
130            final int[] l2 = algorithmB(reverse(leftSecondPart), reverse(right));
131
132            // Find k, as per the Step 4 of the algorithm
133            int k = 0;
134            int t = 0;
135            for (int j = 0; j <= n; j++) {
136                final int s = l1[j] + l2[n - j];
137                if (t < s) {
138                    t = s;
139                    k = j;
140                }
141            }
142
143            // Step 5: solve simpler problems, recursively
144            out.append(algorithmC(leftFirstPart, right.subSequence(0, k)));
145            out.append(algorithmC(leftSecondPart, right.subSequence(k, n)));
146        }
147
148        return out.toString();
149    }
150
151    // An auxiliary method for CharSequence reversal
152    private static String reverse(final CharSequence s) {
153        return new StringBuilder(s).reverse().toString();
154    }
155
156    /**
157     * Calculates the longest common subsequence similarity score of two {@code CharSequence}'s passed as
158     * input.
159     *
160     * <p>
161     * This method implements a more efficient version of LCS algorithm which has quadratic time and
162     * linear space complexity.
163     * </p>
164     *
165     * <p>
166     * This method is based on newly implemented {@link #algorithmB(CharSequence, CharSequence)}.
167     * An evaluation using JMH revealed that this method is almost two times faster than its previous version.
168     * </p>
169     *
170     * @param left first character sequence
171     * @param right second character sequence
172     * @return length of the longest common subsequence of <code>left</code> and <code>right</code>
173     * @throws IllegalArgumentException if either String input {@code null}
174     */
175    @Override
176    public Integer apply(final CharSequence left, final CharSequence right) {
177        // Quick return for invalid inputs
178        if (left == null || right == null) {
179            throw new IllegalArgumentException("Inputs must not be null");
180        }
181        // Find lengths of two strings
182        final int leftSz = left.length();
183        final int rightSz = right.length();
184
185        // Check if we can avoid calling algorithmB which involves heap space allocation
186        if (leftSz == 0 || rightSz == 0) {
187            return 0;
188        }
189
190        // Check if we can save even more space
191        if (leftSz < rightSz) {
192            return algorithmB(right, left)[leftSz];
193        }
194        return algorithmB(left, right)[rightSz];
195    }
196
197    /**
198     * Computes the longest common subsequence between the two {@code CharSequence}'s passed as input.
199     *
200     * <p>
201     * Note, a substring and subsequence are not necessarily the same thing. Indeed, {@code abcxyzqrs} and
202     * {@code xyzghfm} have both the same common substring and subsequence, namely {@code xyz}. However,
203     * {@code axbyczqrs} and {@code abcxyzqtv} have the longest common subsequence {@code xyzq} because a
204     * subsequence need not have adjacent characters.
205     * </p>
206     *
207     * <p>
208     * For reference, we give the definition of a subsequence for the reader: a <i>subsequence</i> is a sequence that
209     * can be derived from another sequence by deleting some elements without changing the order of the remaining
210     * elements.
211     * </p>
212     *
213     * @param left first character sequence
214     * @param right second character sequence
215     * @return the longest common subsequence found
216     * @throws IllegalArgumentException if either String input {@code null}
217     * @deprecated Deprecated as of 1.2 due to a typo in the method name.
218     * Use {@link #longestCommonSubsequence(CharSequence, CharSequence)} instead.
219     * This method will be removed in 2.0.
220     */
221    @Deprecated
222    public CharSequence logestCommonSubsequence(final CharSequence left, final CharSequence right) {
223        return longestCommonSubsequence(left, right);
224    }
225
226    /**
227     * Computes the longest common subsequence between the two {@code CharSequence}'s passed as
228     * input.
229     *
230     * <p>
231     * This method implements a more efficient version of LCS algorithm which although has quadratic time, it
232     * has linear space complexity.
233     * </p>
234     *
235     *
236     * <p>
237     * Note, a substring and subsequence are not necessarily the same thing. Indeed, {@code abcxyzqrs} and
238     * {@code xyzghfm} have both the same common substring and subsequence, namely {@code xyz}. However,
239     * {@code axbyczqrs} and {@code abcxyzqtv} have the longest common subsequence {@code xyzq} because a
240     * subsequence need not have adjacent characters.
241     * </p>
242     *
243     * <p>
244     * For reference, we give the definition of a subsequence for the reader: a <i>subsequence</i> is a sequence that
245     * can be derived from another sequence by deleting some elements without changing the order of the remaining
246     * elements.
247     * </p>
248     *
249     * @param left first character sequence
250     * @param right second character sequence
251     * @return the longest common subsequence found
252     * @throws IllegalArgumentException if either String input {@code null}
253     * @since 1.2
254     */
255    public CharSequence longestCommonSubsequence(final CharSequence left, final CharSequence right) {
256        // Quick return
257        if (left == null || right == null) {
258            throw new IllegalArgumentException("Inputs must not be null");
259        }
260        // Find lengths of two strings
261        final int leftSz = left.length();
262        final int rightSz = right.length();
263
264        // Check if we can avoid calling algorithmC which involves heap space allocation
265        if (leftSz == 0 || rightSz == 0) {
266            return "";
267        }
268
269        // Check if we can save even more space
270        if (leftSz < rightSz) {
271            return algorithmC(right, left);
272        }
273        return algorithmC(left, right);
274    }
275
276    /**
277     * Computes the lcsLengthArray for the sake of doing the actual lcs calculation. This is the
278     * dynamic programming portion of the algorithm, and is the reason for the runtime complexity being
279     * O(m*n), where m=left.length() and n=right.length().
280     *
281     * @param left first character sequence
282     * @param right second character sequence
283     * @return lcsLengthArray
284     * @deprecated Deprecated as of 1.10. A more efficient implementation for calculating LCS is now available.
285     * Use {@link #longestCommonSubsequence(CharSequence, CharSequence)} instead to directly calculate the LCS.
286     * This method will be removed in 2.0.
287     */
288    @Deprecated
289    public int[][] longestCommonSubstringLengthArray(final CharSequence left, final CharSequence right) {
290        final int[][] lcsLengthArray = new int[left.length() + 1][right.length() + 1];
291        for (int i = 0; i < left.length(); i++) {
292            for (int j = 0; j < right.length(); j++) {
293                if (i == 0) {
294                    lcsLengthArray[i][j] = 0;
295                }
296                if (j == 0) {
297                    lcsLengthArray[i][j] = 0;
298                }
299                if (left.charAt(i) == right.charAt(j)) {
300                    lcsLengthArray[i + 1][j + 1] = lcsLengthArray[i][j] + 1;
301                } else {
302                    lcsLengthArray[i + 1][j + 1] = Math.max(lcsLengthArray[i + 1][j], lcsLengthArray[i][j + 1]);
303                }
304            }
305        }
306        return lcsLengthArray;
307    }
308
309}